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Different algorithms have recently been developed for the diagnosis of many types of civil
and mechanical structures using modal data, such as natural frequencies and mode shapes.
Although many solutions have been proposed, some important questions seem to be absent
in the technical literature. If changes in a structure’s modal parameters are able to reflect
structural faults, it is important to know what is the smallest detectable physical change
in that structure.

It is suggested that damage detection by means of modal data can be useful for
macro-damage rather than for micro-damage. This resulted from numerical and
experimental tests using a simple correlation between measurement noise and sensitivity of
modal data, with respect to structural changes in different parts of a sytem. An automatic
sensitivity approach is presented to obtain the lower bound of structural faults for the
particular structure under study. The same automatic procedure is able to detect possible
shadow sites within the frequency range analyzed.
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1. INTRODUCTION

When local damage occurs on single or multiple sites of a structure, its static and dynamic
behaviour may change significantly depending on the size of the damage and its location.
Consequently, static and/or dynamic parameters should be monitored to readily detect the
problem so that adequate preventive measures may be taken. It is important to detect
damage at its early stages so as to have a longer lead time to final failure.

Recently dynamic parameters, such as modal data, have been extensively used (for a
short review see references [1–9]) with different approaches, different amounts of data, and
differing advantages and disadvantages. Of particular importance is reference [3] where
about 300 references covering the past 20 years are critically discussed. Although all these
methods acknowledge the importance of validating measurement errors by using real data
from measurements on real structures, no information has been reported about the
smallest physical change in a structure which may be detected from changes in its modal
parameters. It would also be interesting to explore whether damage in any location on a
structure may be detected by modal parameter changes when a reduced frequency range
is available, as is practically always the case.

Some authors acknowledge the importance of the problem. Richardson and Mannan
[10] point out that the best answer is, ‘‘The smaller the better!’’, assuming that it is always
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better to detect damage at its early stages. Experimental tests [10] have been carried out
to show that modal data can be effective in detecting the slightest structural changes. No
automatic method was however introduced to measure the smallest detectable change.

Also Farrar and Cone [11] felt the need to quantify the amount of damage that causes
measurable changes in modal parameters. This work was carried out principally from an
experimental point of view (for a bridge) in order to provide the scientific community with
real data as a tool for benchmarking damage detection algorithms.

By using a projectile launched from a low pressure compressed air tube, Tracy et al.
[12] investigated the effects of impact damage on composite materials. Although small local
defects showed significant and different changes in the natural frequencies which fell within
the range analyzed, they recognized that further work was necessary to determine whether
the modal inspection technique could resolve fine variations in the size and location of
impact damage.

By relating measurement noise to the sensitivity of damaged sites, this paper proposes
an automatic procedure to assess the lowest amount of damage detectable on a structure.
The numerical and experimental tests illustrated suggest using the same automatic
procedure to check whether there are any shadow sites, i.e., sites where potential damage
cannot be detected by the modal data of a given frequency range.

Since it is difficult to group the various types of damage into one single representative
class, all the assessments were made using a stiffness reduction factor to implement a
homogeneous reduction of stiffness. Finally, the case for which any location of the
structure has the same probability to be damaged is investigated, as well as the case for
which loads and stresses are not easily predictable.

2. CHARACTERIZATION OF THE SENSITIVITY OF THE STRUCTURE

When the health state of a key machine for a production cycle or an important structure
has to be monitored, a simple procedure may be used to determine whether damage is
present on the structure. Until damage is detected the location and size of the damaged
sites would be uncertain and meangingless.

A simple way to detect whether a fault has occurred on a structure (using modal analysis
techniques) is to look for possible shifts in the natural frequencies considered. This subset
of modal parameters, i.e., natural frequencies, has been chosen because they cost less than
measuring mode shapes and the noise threshold is lower than the one which characterizes
damping measurements and mode shapes [11].

The noise threshold in a set of natural frequencies may be estimated by measuring a
set of FRFs with different pairs of measuring points on the structure under study.

A necessary condition to detect the jth damaged site by checking the kth natural
frequency change is:

=dfk (dDj )=q sk . (1)

If the standard deviation sk , of the kth natural frequency in a set of FRFs functions is
assumed to be proportional to the frequency value, equation (1) can be rewritten as:

=dfk (dDj )=
fk

q sk

fk
= o, (2)

with a constant or maximum percent band error threshold o for any kth frequency. In
order to assess whether the mesh of an FE model in all the j sites involves a significant
change in modal data and thus verify equation (2), it is necessary to evaluate the first
member of the equation.
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Hence, a damage site is introduced by using homogeneous stiffness reduction factors Dj

for the jth stiffness matrix. When small faults occur with a particular scenario on the
structure, the kth natural frequency changes as follows:

dfk (D1, D2, . . . ,Dm )=
1fk

1D1
· dD1 +

1fk

1D2
· dD2 + · · · +

1fk

1Dm
· dDm . (3)

When the stiffness change occurs at a single site only, the kth frequency change dfk is
directly proportional to the sensitivity zkj = 1fk /1Dj term. A single damage site transforms
condition (2) into (4):

=dfk =
fk

=
1
fk

·
1fk

1Dj
· =dDj ==

1
fk

· zkj · =dDj =q o. (4)

Thereby the minimum detectable damage in location j is:

(dD%k,j )min =
fk · o%

zkj
. (5)

With equation (5) the minimum detectable damage may be readily estimated by using
natural frequencies and sensitivity terms, zkj . The latter can be assessed by running one
eigensolution of the FE model supposing the structure is in an undamaged state. This
possibility is reported in the following section.

Further perusal of equation (5) makes it clear that the existence of a lower bound of
damage with respect to the noise threshold is related to the behaviour of the sensitivity
term zkj . This term, as will be clarified further on, is different from zero when no local rigid
body motion is present and it decreases monotonically to zero when the size of the elements
used to characterize the damaged sites is small.

By using equation (5) a matrix C can be defined. For each jth column it reports the
minimum detectable damage at location j by checking the kth frequency change. By adding
a complementary row in C [p+1×m], that is the minimum for each column j, it is
possible to get an indication of shadow sites, or the location j for which Cp+1,j q 100%
(it is impossible that damage exceeds a complete loss of the element itself). Occasional
damage at that location j will never be detected by checking the natural frequency changes.

This last observation is obviously constrained by a first order approximation. The
minimum detectable stiffness change, assessed by (5), has been obtained by equation (3),
where the frequency change, dfk , is determined by making use of a first order
approximation. Thus, if the calculation is made to obtain lower bounds of damage and
consequently a very small dDj change, estimation of the elements in C will be fairly good.
The same does not apply when high values of dDj are assessed, as when shadow sites are
estimated. Nevertheless, good estimations can also be obtained for shadow sites, as is
shown later in this paper.

2.1.          

Modelling a damaged site by introducing homogeneous stiffness reduction factors Dj ,
but no damage in the mass matrix, a global matrix in structural co-ordinates can be
assembled with a classical FE assembly procedure as follows:

[K]= s
m

j=1

[A]Tj Dj [K]j [A]j = s
m

j=1

Dj [K]Pj , (6)

where the Boolean assembly matrices [A]j position the terms from each element matrix
within the global matrix.
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It can be shown [13] that the sensitivity of the kth eigenvalue to a small stiffness change
in the jth element is

jkj =
1lk

1Dj
=

{fk}T[Kj ]P{fk}
{fk}T[M]{fk}

, (7)

or, equivalently, with respect to the natural frequencies:

zkj =
1fk

1Dj
=

1
8 · p2 · fk

{fk}T[Kj ]P{fk}
{fk}T[M]{fk}

. (8)

By means of (7 and 8) a sensitivity matrix—[S] or [s] respectively —can be assessed by
obtaining just one eigensolution of the system.

As shown in reference [5] and mentioned here for completeness from another point of
view, by using equations (7 and 8), the following additive property can be proved:

The sum of all the elements in the kth row of [S] is equal to the eigenvalue lk and the sum
in the kth row of [s] is equal to fk /2.

1. Proof
By considering the classical eigenvalue problem for an undamaged structure:

([K]− lk [M]){fk}= {0}. (9)

Re-arranging and pre-multiplying by {fk}T we obtain,

{fk}T[K]{fk}= lk{fk}T[M]{fk}. (10)

Using equation (6) in (10) and comparing the result with equation (7), we have:

lk =

{fk}T s
m

j=1

[Kj ]P{fk}

{fk}T[M]{fk}
=

s
m

j=1

({fk}T[Kj ]P{fk})

{fk}T[M]{fk}
= s

m

j=1

jkj . (11)

Moreover, if equation (8) is recalled, we can write:

lk = s
m

j=1

jkj = s
m

j=1

zkj · 8 · fk · p2, (12)

and considering the independence of the k index with respect to the j index we obtain:

lk =(2 · p · fk )2 =8 · fk · p2 · s
m

j=1

zkj , (13)

and finally,

s
m

j=1

zkj = 1
2 · fk . (14)

q
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This property of the eigenvalues outlined in equations (12) and (14) suggests an interesting
observation:

The sensitivity of any natural frequency to changes in any element of a structure corresponds
to a fraction of the eigenvalue amongst all the finite elements with which the structure has
been modelled.

Given that natural frequencies are unchangeable physical properties of a structure, a
refinement of the mesh into smaller sites reduces any positive semi-definite term of the [s]
matrix, supposing that the higher convergence of the redefined mesh is neglected. Hence,
using equation (5), it is evident that a lower bound, dDkj,min , exists for the minimum extent
of damage beyond which it is impossible to detect significant changes in natural frequencies
when damage occurs on the structure.

Finally, from a computational point of view, equation (5) proves to be efficient in
estimating the size of damaged and potential shadow sites. Indeed, owing to the additive
property mentioned above, estimation with a rough mesh is always better than with a finer
one because the following inequalities are always verified:

zrough mesh
k,j e zfiner mesh

k,j c
(5)

(dDrough mesh
k,j )min E (dDfiner mesh

k,j )min . (15)

Consequently, if damage at location j is not detectable, then the damage extent cannot be
detected in a site within the same jth location. Hence, a rough analysis which relies on
the finite elements used is able to isolate areas where shadow sites are certainly located.

3. NUMERICAL AND EXPERIMENTAL EXAMPLES

If a fact has been proven theoretically, its usefulness must be validated experimentally.
Two numerical examples have been considered in this investigation. Corresponding
experimental validations prove the usefulness of the method proposed to estimate the
smallest detectable damage in a mechanical system.

The first example concerns a cantilever beam. This structure has been chosen because
of its manifold applications. In this case, experimental confirmation comes from the
existing literature [14].

The second example is a completely free aluminium angled beam for which only
out-of-plane vibrations have been considered. In this case full numerical and experimental
assessments and corresponding comparisons have been carried out.

All the assessments were performed by introducing E=70 GPa, n=0·3, r=2770 kg/
m3 into the numerical models.

3.1.   

Figure 1 shows the numerical model used and the corresponding FE-mesh with three
different discretizations, using 10, 20 and 30 elements. The same picture also illustrates the
material and the geometric properties applied. The corresponding natural frequencies are
listed in Table 1. Owing to the high h/L ratio, the assessments have been carried out by
using the Eulero–Bernoulli model by an FE package developed in house, hereafter
indicated as FE/built-in package.

Figure 2 shows the additive property presented in section 2.1 relative to the first
frequency. The C matrix was assessed by using a subroutine implemented in an FE/built-in
package, the same used to assess the natural frequencies listed above. The results are listed
in Table 2. A band error of 1·0% was used to estimate the lower bounds of the damage
that significantly influenced the first ten natural frequencies in the frequency range of about
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Figure 1. Cantilever beam FE-model with material and geometric properties. Analytical base for FE model:
bending vibration: Eulero model; longitudinal vibration: no transverse effect. E=70 GPa, r=2770 kg/m3,
h/l=1/50, L=500 mm, cross-section=rectangular.

T 1

Natural frequencies (Hz) of the cantilever model (Figure 1)

No Type Analytical FE-M×10 FE-M×20 FE-M×30

1 Bent 32·5 32·5 32·5 32·5
2 Bent 203·6 203·8 203·8 203·8
3 Bent 570·0 570·7 570·6 570·6
4 Bent 1116·9 1119·1 1118·1 1118·1
5 Bent 1846·4 1852·9 1848·5 1848·3
6 Long 2513·5 2516·1 2514·1 2513·8
7 Bent 2758·2 2775·8 2762·0 2761·2
8 Bent 3852·3 3894·6 3859·0 3856·8
9 Bent 5128·9 5217·8 5140·5 5135·3

10 Bent 6587·7 6746·5 6607·9 6597·1

6·5 kHz. In order to clearly show the critical sites (Table 2), minimum damage values
higher than 60% are in bold type.

As shown in Table 2, it is difficult to introduce significant changes in the first mode when
local damage occurs in locations 6–10. A stiffness reduction in locations 7–10 will never
change the first natural frequency significantly. A similar behaviour shall be expected if
the first three mode shapes are taken into account to check the integrity of the extremity
of the cantilever beam.

If the first six mode shapes are taken into account the C matrix indicates that damage
at location 10 will never be detected due to the shifts of the corresponding natural
frequencies. Location 10 is a shadow site in the 2·5 kHz range, but not in the 6·5 kHz range.

Similar results were suggested by Rizos et al. [14] whose work introduced a method to
locate a crack on a beam and was followed by a numerical–experimental test. Rizos et al.
reported that the biggest localization errors, after damage had occurred, were at the
extremity of a cantilever beam specimen. Our work has shown that modal data in a
cantilever beam have a low sensitivity to the first natural frequencies.

3.2.   

Figure 3 depicts the numerical model used to simulate the dynamic behaviour of an
aluminium angled beam specimen during free out-of-plane vibrations. The same picture
shows the FE model with beam elements connected by 13 nodes and 12 elements.
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Figure 2. Sensitivity of the first frequency (32·5 Hz) with respect to any finite element for each mesh considered
in Figure 1. W, M×10; M×20; –Q–, M×30.

T 2

C matrix containing the minimum detectable fault by measuring natural frequency changes
when a threshold error o% of 1% is considered (reference: Figure 1, M×10)

jth location
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

kth 1 2 3 4 5 6 7 8 9 10

1 5·76 7·91 11·51 18·02 31·09 61·43 148·27 495·38 3068·98 89784·07
2 8·35 48·40 168·10 22·52 11·28 9·89 13·22 28·19 123·94 2796·21
3 11·83 114·08 15·49 13·75 63·08 48·41 10·95 9·88 26·27 435·18
4 16·34 25·20 14·25 105·44 14·52 14·73 94·64 11·42 12·91 141·61
5 20·27 15·12 43·11 15·02 22·33 22·58 15·37 36·23 10·21 66·02
6 10·06 10·58 11·72 13·76 17·29 23·71 36·63 68·28 183·50 1624·48
7 21·61 15·47 33·07 15·83 22·01 21·91 16·03 33·59 11·56 38·46
8 20·51 21·36 15·31 34·25 16·81 16·88 34·27 15·59 16·76 26·18
9 18·73 26·84 16·89 17·07 24·73 24·55 16·97 17·24 22·87 20·11

10 17·66 22·58 21·42 20·29 19·38 19·41 20·37 21·64 21·26 17·34

10+1 5·76 7·91 11·51 13·75 11·28 9·89 10·95 9·88 10·21 17·34

Note: C matrix: (dD%k, j)min , o%=1·0.

All the assessments were carried out using the same FE/built-in package mentioned in
section 3.1. In order to have a complete data-base for comparison, the assessments were
also carried out using a commercial FE/package: Ansys V.5.0 which modelled the specimen
under investigation by using 3-D solid elements (SOLID45).

Figure 3. Angle beam FE-model with geometric characteristics (all dimensions in mm). Q, Response point;
q×, Impact point. Thickness 10 mm.
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Figure 4. Mode shapes, out-of-plane vibrations of the angle beam model. (a) Mode 1: 537·0 Hz. (b) Mode
2: 1514 Hz. (c) Mode 3: 2113 Hz. (d) Mode 4: 3024 Hz.

The values obtained with Ansys V.5.0 are shown in Figure 4, where the first four mode
shapes and the natural frequencies are reported together. The natural frequencies resulting
from the FE/built-in package are listed in Table 3 together with the Ansys values and the
experimental natural frequencies.

3.2.1. Angle beam model, experimental and numerical comparisons
Three specimens with the same geometric characteristics depicted in Figure 3, were

obtained from the same square aluminium plate. For each one of them a different element
was damaged and for each damage stage the natural frequency changes were assessed by
the impulse hammer technique [15]. Figure 3 also shows the measuring point pair (the
response point—for the location of the accelerometer, and the impact point—for the
location where the hammer was impacted) used to measure the frequency response
functions (H2–12). The latter were estimated by averaging five subsequent measurements
at each stage of the damaged or undamaged state.

In Figure 3, the specimens called (a), (b) and (c) were respectively damaged in element
nos 5, 9 and 12. A homogeneous reduction in stiffness was simulated by removing, on an
out-of-plane side of the specimen. Uniformly 0·5 mm of material was removed three times
corresponding to about 15%(−0·5 mm), 30%(−1·0 mm) and 40%(−1·5 mm) of damage.

A circle fitting procedure based on the concept of a single degree of freedom [15] (SDOF)
was carried out in the complex plane to extract the first four experimental natural
frequencies. Because of the separation among the natural frequencies detected in the
frequency range analyzed, the SDOF procedure described should ensure confident results.
Table 3 shows all the experimental and numerical results to show the natural frequency
values of the undamaged state, and Table 4 reports the percentage of natural frequency

T 3

Comparison between experimental and numerical natural frequencies (Hz) (reference: Figure
3, undamaged state)

Specimen Specimen Specimen FE-Ansys FE-beam
Mode no. (a) (b) (c) 3-D Bernoulli

1 570·6 567·4 550·0 537·0 541·7
2 1573·0 1565·0 1515·0 1514·0 1503·0
3 1989·0 1992·0 1975·0 2113·0 1938·0
4 3040·0 3024·0 2929·0 3024·0 2934·0
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T 4

Percentage frequency changes when a damage occurs in a single site only on the alluminium
angle beam shown in Figure 3

Damage element no. 5 Damage element no. 9 Damage element no. 12
specimen (a) specimen (b) specimen (c)

ZXXXXCXXXXV ZXXXXCXXXXV ZXXXXCXXXXV
Mode no. 15% 30% 40% 15% 30% 40% 15% 30% 40%

1 −1·49 −3·66 −6·29 +0·30 +0·32 +0·42 +0·16 +0·16 +0·15
2 −0·19 −0·40 −0·70 −0·30 −0·75 −1·34 +0·15 +0·14 +0·25
3 −0·48 −0·90 −1·53 −1·30 −2·51 −4·32 +0·20 +0·28 +0·48
4 −0·83 −2·66 −2·91 −0·77 −1·68 −3·02 +0·19 +0·29 +0·45

changes assessed experimentally in the undamaged state. In Figure 5 the log–lin inertance
plot of the three cases (a–c) considered in this work shows clearly the percentage frequency
shifts listed in Table 4 with a 40% damage level. Finally, Table 5 shows the C matrix that
represents a prediction of the sensitivity of the modal data used to check the health state
of a structure by utilizing the first four natural frequencies of the system.

From the diagnosis of the plots shown in Figure 5, it’s clear that in the 0–4 kHz range,
the presence of 40% damage on element no. 12 could not be detected. The natural

Figure 5. Plot of experimental FRFs of the intact and damaged angle beam with about 40% stiffness reduction
in different locations. ——, FRF (H2–12) undamaged. (a) ---, FRF (H2–12) damaged element no. 5. (b) –––,
FRF (H2–12) damaged element no. 9. (c) ———, FRF (H2–12) damaged element no. 12.
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T 5

C matrix containing the minimum detectable fault by measuring natural frequency changes
when a threshold error o% of 0·5% is considered (reference: Figure 3)

ith location
ZXXXXXXXXXXXXXXXXXCXXXXXXXXXXXXXXXXXV

kth 1 2 3 4 5 6 7 8 9 10 11 12

1 1090·1 48·6 11·1 5·2 3·9 4·2 6·8 19·3 157·4 4872·8 2768·8 26036·7
2 179·8 11·4 4·6 6·1 41·4 13·2 4.6 5·9 26·4 511·4 846·8 6343·4
3 693·5 72·8 28·9 17·7 11·9 8·5 6·9 6·1 5·7 6·7 18·9 315·2
4 62·3 6·1 6·4 45·9 6·3 10·8 21·0 4·8 10·6 50·4 50·5 479·5

4+1 62·3 6·1 4·6 5·2 3·9 4·2 4·6 4·8 5·7 6·7 18·9 315·2

Note: C matrix (dD%k, j)min , o%=0·5.

frequencies move upwards. This clearly indicates that the stiffness reduction effect does not
significantly influence the natural frequency in the analyzed range. The situation is different
when damage occurs at locations 5 and 9 (Figures 5(a and b), respectively).

Worth noting is that this behaviour had been predicted in Table 5, where column 12
lists damage higher than 100% to obtain a significant change in natural frequencies with
a 0·5% noise threshold [1] for the first four natural frequencies. The similarities with the
experimental data, shown in Figure 5 and Table 4, are also applicable to locations 5
and 9.

If specimen (a) (damage in element no. 5) is considered, the C matrix in Table 5 indicates
that the minimum detectable damage is 3·9% for mode 1 and 6·3% for mode 4, while for
modes 2 and 3 the amount of damage introducing a significant natural frequency change
is certainly higher. On specimen (a) since small-sized damage is considered (15%), the
highest values, like the ones reported in the first column of Table 4, relate only to modes
1 and 4 at any damage stage while the changes in modes 2 and 3 are clearly small.

It is relevant that all the correspondences between numerical and experimental results
have been obtained without taking into account updated numerical models, which is a
relatively time consuming process. Here, lower bounds and shadow sites have been
detected by means of a numerical model. This is in line with Williams et al. [16], who
pointed out that while experimental natural frequencies could differ from the non-updated
numerical FE model, natural frequency changes evaluated on the real system might follow
a pattern similar to the estimations carried out with the numerical model.

4. DISCUSSION AND CONCLUSIONS

This survey highlights practical problems in damage detection when using modal
parameters. The frequency range is not usually a free choice for the analyst. Quite the
contrary, the lowest modes are measurable in the frequency domain from 0 up to maximum
frequency value, and the maximum is closely related to the measurement procedure and
specimen under investigation. Therefore a method that is able to test the sensitivity of the
data base in the available frequency range is obviously welcome.

A numerical and experimental investigation was carried out on the smallest detectable
fault by measuring natural frequency changes. The results obtained indicate that modal
data may help to detect macro-damage of practical interest. Nevertheless it is the authors’
opinion that the frequency range available should be checked before diagnosing the health
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state of a structure. This is necessary to understand whether any location of damage is
detectable by modal shifts falling in the frequency range analyzed.

An automatic numerical procedure has proven to provide a fairly good estimation of
the presence and location of a lower bound of structural faults when a limited frequency
range is analyzed. The same automatic procedure is able to detect possible shadow sites
within the frequency range considered. The numerical method can be easily implemented
in an FE-package requiring only one eigensolution.
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APPENDIX: NOMENCLATURE

[A] Boolean assembly matrix in FE method
[K] global stiffness matrix
[Kj ]P stiffness matrix of jth element positioned in [K]
[M] global mass matrix
m number of elements in the structure
lk kth eigenvalue (v2

k )
{fk} kth mode shape
vk kth modal frequency (rad/s)
fk kth natural frequency (Hz)
Dj stiffness reduction factor of jth element
[S] sensitivity matrix of natural frequencies
[s] sensitivity matrix of eigenvalues
jkj sensitivity of the kth eigenvalue with respect to the jth stiffness change
zkj sensitivity of the kth frequency with respect to the jth stiffness change

Subscripts

k mode number, where k=1, 2, . . . , p
j element number where j=1, 2, . . . , m

Superscripts

T transpose


